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Abstract: The spacecraft Attitude Control System (ACS) performance and robustness depend on the interaction 
effects between the fuel slosh motion, the panel's flexible motion, and the spacecraft rigid motion, mainly during 
translational and/or rotational maneuvers. In regards to satellite pointing accuracy flexibility and fuel, slosh is the 
two most important effects that should be considered in the satellite ACS design since their interactions can dam-
age the ACS performance and robustness. Once, the lowest vibration frequencies, normally of the sloshing mode 
are about six times less than of the ACS bandwidth. Therefore, there is a strong possibility that this mode can des-
tabilize the ACS pointing accuracy. This phenomenon is called spillover because the control effort spills over out-
side the control bandwidth. As a result, the designer needs to explore the limits between the conflicting require-
ments of performance, that is, increase of the bandwidth without introduction noise in the ACS keeping the system 
robustness to parameters variation. In this paper, one applies the H infinity control method which can deal with 
these two design requirements (performance and robustness) considering the controller error pointing that may be 
limited by the minimum time necessary to suppress disturbances that affect the satellite attitude acquisition. The 
equations of motions are obtained considering the Lagrange method for small flexible deformations and a mechani-
cal model of liquid sloshing which allows modeling and investigating the longitudinal dynamic characteristics of a 
partially filled liquid tank during a pitch maneuver, satisfying performance and robustness requirements. 
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1 Introduction 
THE name sloshing is given to the free movement 

of the surface of a liquid that partially fills a 
compartment. The free movement effected by this 
liquid layer is a vibratory movement that depends on 
the shape of the tank, the acceleration of gravity, 
and/or the axial acceleration of the tank. By 
oscillating the mass of liquid, the center of mass of the 
body also oscillates, thus disturbing the rigid-flexible 
part of the vehicle under study. Like the one in [1] the 
vibratory movement carried out by the liquid is 
considered to be a standing wave on the free surface 
of the liquid.  
    As for disturbances due to flexible solar panels 
vibrations control one has developed for accurate 
attitude control strategy using piezoelectric actuators 
to actively control the vibrations [2, 3]. On the other 
hand, a rigid manipulator control application, a feed-

back control law considering the coupling between a 
rigid manipulator and a flexible appendage has been 
proposed to actively control the appendage vibrations  
[4]. Likewise, for large space structure stability, dis-
tributed vibration suppression during on-orbit assem-
bly has been studied [5]. 

In the simultaneous control of the movement of 
rigid-flexible structures and liquid inside tanks, the 
modes of vibration that cause a greater disturbance in 
the system are due to the slosh phenomenon as 
demonstrated in  [6]. The reason is because the liguid 
movement has a lower frequency of vibration, and it 
moves a g reat quantity of mass, thus displacing the 
center of mass of the liquid. As a result, changing the 
moment of inertia of the system. Figure1 shows the 
correlation between the vibration and the 
displacement of the center of mass of the liquid.  
 The sloshing modeling began in the sixties with 
Abramson's article [7], not having undergone many 
modifications since then. Due to the complexity of 
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creating the analytically model for the fluid that 
moves freely within a closed container, a simplified 
system is used called a mechanical analog, as will be 
seen in the following. 

 
Fig. 1 Correlation between the vibration and the 

displacement. 

 In the paper [8] is presented the determination of a 
satellite-based on the Lagrangian mechanics, and are 
presented two types of mechanical analogs that can 
replace the complex dynamics of sloshing. For the 
model in which sloshing is replaced by a pendulum 
dynamic, two control laws are designed, one based on 
Lyapunov and another using the LQR method. These 
two laws apply to the nonlinear dynamics of the 
satellite. The results showed that both laws were able 
to control the movement of the liquid satisfactorily. 
An analysis to model propellant slosh for the Europa 
Clipper mission using a two-pendulum model and 
compare the results with a computational fluid 
dynamics (CFD) is presented in [9]. The simulation 
results were used as real slosh behavior for two 
propellants at three fill fractions. They have concluded 
that the two-pendulum model can accurately capture 
slosh behavior either before or after the first peak.   
 To model the slosh to better study the dynamics 
irregularities that were presented during Saturn S-IVB 
rotation maneuvers, it was proposed a comparison 
between slosh, modeled with a mechanical equivalent, 
with a scale model capable of getting the slosh 
behavior data [10]. It was concluded that the 
dynamics of the pendulum represented an excellent 
performance of the slosh when compared to the 
experimental model, another important conclusion 
was that only seven percent of the liquid participates 
in the rigid body movement of the tank during the 
rotation excitation.  
 The main objective of this paper is to simulate the lon-
gitudinal control (pitch maneuver) of a space vehicle with a 
flexible solar array and a partially filled liquid in an internal 
tank, developed using H infinity, when a transfer orbit is 
realized. This paper is organized as follow, first the 

dynamics of rigid-flexible spacecraft with the slosh 
dynamics are detailed, secondly the H-infinity control 
method is presented with its performance require-
ments, thirdly the simulations and results are dis-
cussed. Finally, the conclusion are presented. 

2 Mathematical Model 
 The model adopted was inspired by the European 
spacecraft ATV - Automated Transfer Vehicle - built 
by European Space Agency (ESA), whose mission is 
to transport supplies and fuel to the International 
Space Station (ISS). This vehicle, shown in Figure 2, 
can carry seven tones (being almost one tone in liquid 
supplies) was first launched in [11]. Its Attitude 
Control System and Orbit (SCAO) has four motors 
capable of individually generating a thrust of 490 N  
and other twenty-eight small engines capable of 
individually generating 220 N. And once attached to 
the station, its actuators assist the ISS SCAO in the 
attitude maneuvers [11] of the set. 
 

 
Fig. 2 Artistic design of ATV. in: 

http://www.dw.com/image/17821154_303.jpg accessed 
on December 8th 2016 

In a way to simplify the model, for the fluid moving 
freely within a closed tank, it is used a mechanical 
analogous [6]. To do this simplification in necessary 
considering the following criteria for the system: 
 

Small displacement. 
A rigid tank. 
Non-viscous, incompressible and homogeneous  
 

Under these conditions, the slosh dynamics can be 
approximate by a mechanical system consisting of a 
mass-spring or pendulum. For this article, the 
dynamics of the slosh is approximate by the pendulum 
dynamic [11].  
The parameters of the system in study are: b is the 
distance from the pendulum attachment point to the 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2020.19.36 Alain G. Souza, Luiz C. G. Souza

E-ISSN: 2224-2678 316 Volume 19, 2020



center of mass of the rigid body,  a is the length of the 
pendulum rod and l is the length of the flexible rod of 
the solar array.  
The state variables are: θ is the attitude angle of the 
satellite (rigid body) in respect to the fixed body 
reference,  ψ is the angle formed between the 
pendulum rod with the reference axis, representing 
slosh movement, δ are the elastic nondimensional 
deformation, and the radial and transversal 
components of the velocity of the center of the tank 
are given by 𝑣𝑣𝑥𝑥  and 𝑣𝑣𝑧𝑧 , respectively.   
The control variables are: f the transversal force 
(external torque) applied by the lateral thrusters, M is 
the pitching moment (internal torque) applied by a 
reaction wheel and the lower jet impulse 𝐹𝐹 (due to the 
orbital transfer is being made, this impulse is 
considered constant).  
The mass proprieties: m is the rigid body mass, 𝑚𝑚𝑓𝑓  is 
the liquid mass, 𝑚𝑚𝑝𝑝  is the mass of the solar array, 𝐼𝐼 is 
the rigid body inertia and 𝐼𝐼𝑓𝑓  is the moment of inertia 
of the liquid.  
Figure 3 the simplified ATV schematic model is 
represented. 
 

 
Fig. 3 Mechanical analogous type pendulum. 

 
The dynamics equation is obtained from the energies 
kinetic and potential, admitting a dissipation of energy 
expressed by the Rayleigh dissipation function applied 
to Lagrange's equations of motion, as shown in [1].  
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where 𝜕𝜕 is the Lagragian, 𝜕𝜕 and 𝜕𝜕 are energy 
dissipation, 𝜏𝜏𝑟𝑟  is an internal torque and 𝜏𝜏𝑑𝑑  is an 
external torque. In this formulation 𝑉𝑉 = [𝑣𝑣𝑥𝑥   0  𝑣𝑣𝑧𝑧]𝑇𝑇, 
𝜔𝜔 = �0   �̇�𝜃   0�𝑇𝑇, 𝜏𝜏𝑑𝑑 = [𝐹𝐹   0   𝑓𝑓]𝑇𝑇 and 𝜏𝜏𝑟𝑟 =
[0   (𝑀𝑀 + 𝑓𝑓𝑓𝑓)   0]𝑇𝑇, the index × represent an anti-
symmetric matrix. 
The energy dissipation 𝜕𝜕 for the slosh and 𝜕𝜕 for the 
flexibility are given by:  
 
 𝜕𝜕 =

1
2
𝜖𝜖�̇�𝜓,𝜕𝜕 =

1
2
𝑘𝑘𝑑𝑑𝛿𝛿2˙  

 

(5) 

where 𝜖𝜖 is a damping constant and kd is the 
dissipation constant. It is also allowed an energy 
elastic potential for the rod, of the form: 
 
 𝐸𝐸𝑝𝑝𝑝𝑝𝑑𝑑 =

1
2
𝑘𝑘𝛿𝛿2 

 

(6) 

where k is the elastic constant.  
The position vector of the satellite mass center with 
respect to the inertial coordination system (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) is 
 
 𝑟𝑟 = (𝑥𝑥 − 𝑓𝑓)�̂�𝑖 + 𝑧𝑧𝑘𝑘 (7) 
 
and his velocity, assuming 𝑣𝑣𝑥𝑥 = �̇�𝑥 + 𝑧𝑧�̇�𝜃 and 𝑣𝑣𝑧𝑧 = �̇�𝑧 +
𝑥𝑥�̇�𝜃 
 
 �̇�𝑟 = 𝑣𝑣𝑧𝑧�̂�𝑖 + �𝑣𝑣𝑧𝑧 + 𝑓𝑓�̇�𝜃�𝑘𝑘 (8) 
 
The position of the center mass of the tank is given 
by: 
 
 𝑟𝑟𝑓𝑓���⃗ = �𝑥𝑥 − 𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎(𝜓𝜓)��̂�𝑖 + �𝑧𝑧 + 𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎(𝜓𝜓)�𝑘𝑘 (9) 
 
and his velocity, 
 
 𝑟𝑟�̇�𝑓 = (𝑣𝑣_𝑥𝑥 + 𝑎𝑎 𝑎𝑎𝑖𝑖𝑎𝑎(𝜓𝜓)(�̇�𝜓 + �̇�𝜃) �̂�𝒊 + (𝑣𝑣𝑧𝑧

+ 𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎(𝜓𝜓)��̇�𝜃 + �̇�𝜓�𝑘𝑘� 
(10) 

 
For the flexible rod, it is considered that it is subject to 
two types of motion: a) same angular motion  𝜃𝜃 that 
the rigid body, with linear velocity of 𝑙𝑙�̇�𝜃; b) The 
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deformation 𝛿𝛿 with respect to the axis Z, with velocity 
�̇�𝛿. Thus, for small deformations, 
 
 𝑣𝑣𝑝𝑝 = �̇�𝛿 + 𝑙𝑙�̇�𝜃 (11) 
 
The Lagrangian (𝜕𝜕 = 𝑇𝑇 − 𝐸𝐸𝑝𝑝𝑝𝑝𝑑𝑑 ) of all system is given 
by: 
 𝜕𝜕 =

1
2 �
𝑚𝑚�̇�𝑟2 + 𝐼𝐼𝜃𝜃2̇�

+
1
2
�𝑚𝑚𝑓𝑓𝑟𝑟𝑓𝑓���⃗̇  2 + 𝐼𝐼𝑓𝑓��̇�𝜃 + �̇�𝜓�2�

+
1
2
𝑚𝑚𝑝𝑝��̇�𝛿 + 𝑙𝑙�̇�𝜃�2 −

1
2
𝑘𝑘𝛿𝛿2 

(12) 

 
Substituting Equations 8 and 9 into eq. 12, using the 
relations given by eq. 1, eq. 2, eq. 3 and performing 
the derivations, one obtains the satellite equations of 
motion given by: 
 
 �𝑚𝑚 + 𝑚𝑚𝑓𝑓�𝑎𝑎𝑥𝑥 + 𝑚𝑚𝑓𝑓𝜃𝜃2˙

+ 𝑚𝑚𝑓𝑓𝑎𝑎��̈�𝜓 + �̈�𝜃�𝑎𝑎𝑠𝑠𝑎𝑎(𝜓𝜓)
+ 𝑚𝑚𝑓𝑓𝑎𝑎��̇�𝜃
+ �̇�𝜓)2𝑎𝑎𝑝𝑝𝑎𝑎(𝜓𝜓) = 𝐹𝐹 

(13) 

 �𝑚𝑚 + 𝑚𝑚𝑓𝑓�𝑎𝑎𝑧𝑧 + 𝑚𝑚𝑓𝑓𝑎𝑎��̈�𝜓 + �̈�𝜃�𝑎𝑎𝑝𝑝𝑎𝑎(𝜓𝜓)
−𝑚𝑚𝑓𝑓𝑎𝑎��̇�𝜃
+ �̇�𝜓)2𝑎𝑎𝑠𝑠𝑎𝑎(𝜓𝜓) + 𝑚𝑚𝑓𝑓�̈�𝜃
= 𝑓𝑓 

(14) 

 �𝑚𝑚𝑓𝑓2 + 𝐼𝐼𝑓𝑓 + 𝑚𝑚𝑝𝑝𝑙𝑙2��̈�𝜃 + �̈�𝛿𝑚𝑚𝑝𝑝𝑙𝑙 + 𝑚𝑚𝑓𝑓𝑎𝑎𝑧𝑧
− 𝜀𝜀�̇�𝜓 = 𝑀𝑀 + 𝑓𝑓𝑓𝑓 

(15) 

 �𝑚𝑚𝑓𝑓𝑎𝑎2 + 𝐼𝐼𝑓𝑓���̈�𝜓 + �̈�𝜃�
+ 𝑚𝑚𝑓𝑓𝑎𝑎(𝑎𝑎𝑠𝑠𝑎𝑎(𝜓𝜓)𝑎𝑎𝑥𝑥
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(16) 

 �̈�𝛿𝑚𝑚𝑝𝑝 + �̈�𝜃𝑚𝑚𝑝𝑝𝑙𝑙 + �̇�𝛿𝑘𝑘𝑑𝑑 + 𝛿𝛿𝑘𝑘 = 0 (17) 
 
Substituting the acceleration 𝑎𝑎𝑥𝑥 = 𝑣𝑣�̇�𝑥 + 𝑣𝑣𝑧𝑧�̇�𝜃 and 
𝑎𝑎𝑧𝑧 =  𝑣𝑣�̇�𝑧 − 𝑣𝑣𝑥𝑥 �̇�𝜃 into eq. 13 and eq. 14, 
 

𝑎𝑎𝑥𝑥 =
𝐹𝐹 −𝑚𝑚𝑓𝑓�̇�𝜃2 −𝑚𝑚𝑓𝑓𝑎𝑎��̈�𝜓 + �̈�𝜃�𝑎𝑎𝑠𝑠𝑎𝑎(𝜓𝜓) −𝑚𝑚𝑓𝑓𝑎𝑎��̇�𝜃 + �̇�𝜓�2𝑎𝑎𝑝𝑝𝑎𝑎(𝜓𝜓)

𝑚𝑚 + 𝑚𝑚𝑓𝑓
 

(18) 

𝑎𝑎𝑧𝑧 =
𝑓𝑓 − 𝑚𝑚𝑓𝑓𝑎𝑎��̈�𝜓 + �̈�𝜃�𝑎𝑎𝑝𝑝𝑎𝑎(𝜓𝜓) + 𝑚𝑚𝑓𝑓𝑎𝑎��̇�𝜃 + �̇�𝜓�2𝑎𝑎𝑠𝑠𝑎𝑎(𝜓𝜓) −𝑚𝑚𝑓𝑓�̈�𝜃

𝑚𝑚 + 𝑚𝑚𝑓𝑓
 

(19) 
 
For the control propose is necessary to linearize the 
equations of motions, for it is assumed that the system 
makes small movements around the point of 

equilibrium, it can be considered as being very close 
to zero values. 
Substituting the eq. 18 and 19 into eq. 15 and 16 
assuming the linearization conditions (small 
displacements, around the operation point), one has 
the motion equation [1]: 
 
 

�̈�𝜃 =
�𝐼𝐼 + 𝑚𝑚𝑝𝑝𝑙𝑙2 + 𝑚𝑚∗(𝑓𝑓2 − 𝑓𝑓𝑎𝑎)�

�𝑀𝑀 + 𝑓𝑓∗𝑓𝑓 −𝑚𝑚𝑝𝑝𝑙𝑙�̈�𝛿 + 𝑚𝑚∗𝑎𝑎𝑓𝑓�̈�𝜓 + 𝜀𝜀�̇�𝜓�
 (20) 

 
�̈�𝜓 = �̈�𝜃 �

𝑚𝑚∗𝑓𝑓𝑎𝑎
𝐼𝐼𝑓𝑓 + 𝑚𝑚∗𝑎𝑎2 − 1� − �̇�𝜓 �

𝜀𝜀
𝐼𝐼𝑓𝑓 + 𝑚𝑚∗𝑎𝑎2�

− 𝜓𝜓�
𝑎𝑎∗𝐹𝐹

𝐼𝐼𝑓𝑓 + 𝑚𝑚∗𝑎𝑎2�

−
𝑎𝑎∗𝑓𝑓

𝐼𝐼𝑓𝑓 +𝑚𝑚∗𝑎𝑎2 

(21) 

 
�̈�𝛿 = 𝜃𝜃𝑙𝑙¨ − �̇�𝛿

𝑘𝑘𝑑𝑑
𝑚𝑚𝑝𝑝

− 𝛿𝛿
𝑘𝑘
𝑚𝑚𝑝𝑝

 (22) 

 
where, 𝑓𝑓∗ = 𝑓𝑓𝑚𝑚𝑓𝑓

𝑚𝑚+𝑚𝑚𝑓𝑓
, 𝑎𝑎∗ = 𝑎𝑎𝑚𝑚𝑓𝑓

𝑚𝑚+𝑚𝑚𝑓𝑓
, 𝑚𝑚∗ = 𝑚𝑚𝑚𝑚𝑓𝑓

𝑚𝑚+𝑚𝑚𝑓𝑓
 and 

𝑚𝑚𝑓𝑓
∗ = 𝑚𝑚𝑓𝑓

𝑚𝑚+𝑚𝑚𝑓𝑓
.  

 
The Equations 20 into 22 shows that the flexible 
movement, generate by the flexible solar array, are 
coupled with the slosh and rigid body movement.  

3 H Infinity Control Method 
 The purpose of a 𝐻𝐻∞ controller is to shape the 
response of the given system to a r eference and to 
obtain (or maintain) the closed-loop system stable 
with the desired performance. A robust controller, in 
turn, should be able to maintain desired performance 
and stability, through the presence of plant 
uncertainties and/or perturbations.  
 In general, the H ∞ problem consists in: Given the 
design requirements, set up a system, with the proper 
filters (weights functions), to adapt the system to the 
conditions of performance and robustness, then create 
a problem of minimization of the transfer function 
matrix, in a closed-loop, using the infinite norm. 
 In Figures 4 a nd 5, t he P (red box) is the called 
generalized plant, K is the controller and G is the 
system plant, with the exogenous inputs w, outputs z, 
u is the control signal, and is the plant output signal. ,   
and are weight functions.  
The weight functions aim to evaluate the performance, 
robustness, and energy consumed by the system, 
acting on the sensitivity function (S), complementary 
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sensitivity function T, and the relationship between 
the controller gain K and the sensitivity function S.  

 
Fig. 4 Generalized plant. 

 

 
Fig. 5 Expanded generalized plant. 

 
The expressions of the sensitivity function (S(s)) and 
complementary sensitivity function (T(s)) are given 
by: 
 
 𝑆𝑆(𝑎𝑎) = �𝐼𝐼 + 𝐺𝐺(𝑎𝑎)𝐾𝐾(𝑎𝑎)�−1 

𝑇𝑇(𝑎𝑎) = �𝐺𝐺(𝑎𝑎)𝐾𝐾(𝑎𝑎)��𝐼𝐼 + 𝐺𝐺(𝑎𝑎)𝐾𝐾(𝑎𝑎)�−1

= 𝐼𝐼 − 𝑆𝑆(𝑎𝑎) 
(23) 

 
the term I are an identity matrix in eq. 23. The 
expressions of output z in Fig. 5, are 
 
 𝑧𝑧1 = 𝑊𝑊𝑘𝑘𝑎𝑎𝑢𝑢 

𝑧𝑧2 = 𝑊𝑊𝑇𝑇𝐺𝐺𝑢𝑢 
𝑧𝑧3 = 𝑊𝑊𝑆𝑆𝐺𝐺𝜔𝜔 + 𝑊𝑊𝑆𝑆𝐺𝐺𝑢𝑢 

𝜈𝜈 = −𝜔𝜔 − 𝐺𝐺𝑢𝑢 

(24) 

 
then with these relations (eq. 24), is possible write the 
expression the of the generalized plant P 
 
 

𝑃𝑃 =  �

0 𝑊𝑊𝐾𝐾𝑆𝑆
0 𝑊𝑊𝑇𝑇
𝑊𝑊𝑆𝑆𝐼𝐼 𝑊𝑊𝑆𝑆𝐺𝐺
−𝐼𝐼 −𝐺𝐺

� (25) 

 

where I is an identity matrix.   
The 𝐻𝐻∞  control method consist in calculate a gain K 
that minimizing the 𝐻𝐻∞  norm of the closed loop 
transfer function, 
 �|𝐹𝐹𝑙𝑙(𝑃𝑃,𝐾𝐾)|�∞ = 𝑚𝑚𝑎𝑎𝑥𝑥ωσ��𝐹𝐹𝑙𝑙(𝑃𝑃,𝐾𝐾)(𝑗𝑗ω)� 

�|𝐹𝐹𝑙𝑙(𝑃𝑃,𝐾𝐾)|�∞ < γ 
(26) 

   
where 𝐹𝐹𝑙𝑙(𝑃𝑃,𝐾𝐾) is the linear fractional transformation 
(LFT) of P and K 
 
 𝐹𝐹𝑙𝑙(𝑃𝑃,𝐾𝐾)ω = 𝑃𝑃11 + 𝑃𝑃12𝐾𝐾(𝐼𝐼 − 𝑃𝑃22𝐾𝐾)−1𝑃𝑃21 (27) 
   
The γ factor is obtained numerically from a s tate-
space realization as the smallest value of γ such that 
the Hamiltonian matrix H has no e igenvalues on the 
imaginary axis, 
 
𝐻𝐻 

=  � 𝐴𝐴 + 𝐵𝐵𝜕𝜕−1𝜕𝜕𝑇𝑇𝐶𝐶 𝐵𝐵𝜕𝜕−1𝐵𝐵𝑇𝑇
−𝐶𝐶𝑇𝑇(𝐼𝐼 + 𝜕𝜕𝜕𝜕−1𝜕𝜕𝑇𝑇)𝐶𝐶 −(𝐴𝐴 + 𝐵𝐵𝜕𝜕−1𝜕𝜕𝑇𝑇𝐶𝐶)𝑇𝑇� 

 
   (28) 

 
where A, B, C and D are the space state matrices and 
𝜕𝜕 = γ2𝐼𝐼 − 𝜕𝜕𝑇𝑇𝜕𝜕. 

3.1 Selecting weight functions  
Then, for the selection of weight functions, it's usual 
to take the structure (eq. 29) and by a put and try 
methodology find the best function for the problem:  
     
 

𝑊𝑊𝑆𝑆 = �
𝑎𝑎

√𝑀𝑀𝑘𝑘 +𝜔𝜔𝑓𝑓

𝑎𝑎+𝜔𝜔𝑓𝑓 √𝐴𝐴
𝑘𝑘 �

𝑘𝑘

,   

𝑊𝑊𝑇𝑇 = ~�
𝑎𝑎+𝜔𝜔𝑓𝑓𝑎𝑎

√𝑀𝑀𝑘𝑘

𝜔𝜔𝑓𝑓𝑎𝑎 +𝑎𝑎 √𝐴𝐴𝑘𝑘 �
𝑘𝑘

 and  𝑊𝑊𝐾𝐾𝑆𝑆 = 𝑎𝑎𝑑𝑑𝑠𝑠 

(29) 

 
where the constants are: k is the roll off adjust, ω𝑓𝑓  is 
the bandwidth of the plant, ω𝑓𝑓𝑎𝑎  is a proportional value 
of ω𝑓𝑓 , A steady-error restriction and M are an 
overshoot restriction. 
 To guarantee a good performance, the maximum 
singular value of the sensitivity function �σ�𝑆𝑆(𝑗𝑗ω)� 
and the complementary sensitivity function �σ�𝑇𝑇(𝑗𝑗ω)� 
must be smaller than the inverse of the WS and WT 
weights function, as shown by the equations below: 
 

𝜎𝜎�𝑆𝑆(𝑗𝑗𝜔𝜔)� < 1
|𝑊𝑊𝑆𝑆 (𝑗𝑗𝜔𝜔 )|,   𝜎𝜎�𝑇𝑇(𝑗𝑗𝜔𝜔)� < (30) 
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1
|𝑊𝑊𝑇𝑇 (𝑗𝑗𝜔𝜔 )| 

Figure 6 represents the  eq. 30 graphically. 
 

 
Fig. 6 Performance ratio 

3.2 Control design requirements 
 For the controller design H ∞ the challenge lies in 
finding a set of weights functions that satisfy the 
performance and robustness conditions necessary to 
control the interaction of flexibility with a slosh. 
If the control law is poorly designed, can occur the 
phenomenon known as spillover [12], whose 
characteristic is to destabilize the system by exciting 
the modes of vibration causing a much greater control 
effort than expected, bringing undesirable 
consequences to the mission. 
With these the objectives, the controller is limited to 
stabilizing the angle of attitude (θ) minimizing the 
effects of slosh and flexibility, acting just in the 
control of the rigid body. 
Therefore, it remains to verify if the design functions 
satisfy the requirements provided by Equations 30, 
shown below, respectively; 
Figure 7 shows the singular value of the system, 

 

 
Fig. 7 Singular values of the system. 

 
then the weight function was sectioned with these 
fallow values for the parameters: ω𝐵𝐵 = 0.05 rd/s, 

ω𝑓𝑓𝑎𝑎 = 15ω𝑓𝑓   𝐴𝐴 = 10−3 and M = 2. the values of A 
and M are the same that traditionally one founds in the 
lectures. These parameters were chosen so that there 
are no resonance effects on the controller due to the 
flexibility and slosh modes, and also because they 
obey the restrictions of the sensitivity and 
complementary sensitivity functions. 
Figure 8 shows that the projected functions respected 
the conditions of performance and existence of the 
functions of weight WS and WT (see Fig.6). For this 
particular problem the weighting of the control signal, 
WKS was considered constant. 

 
Fig. 8 Singular values of S and T in comparison with 

1/|WS| and 1/|WT| 

4 Simulations and Results 
    For the simulations, the following parameters were 
adopted: For the rigid body, m = 600 kg , I = 720 
kgm2, b = 0.25 m, F = 500 N, ϵ = 0.19 kgm2/s. Being  
m,  I,  b,  F, the mass of the rigid body without the 
liquid portion, moment of inertia, distance of the 
actuators to the center of mass, a co nstant force and 
the constant of internal energy dissipation, 
respectively. For slosh, mf = 100 kg, a = 0.33 m, If  = 
10 kgm2. Since mf is the mass of liquid in 
displacement, a size of the stem of the pendulum and 
If moment of inertia of the liquid. For the rod flexible, 
mp = 10 kg, ℓ = 1.5 m, k = 300 kgrad2 / s2 , kd = 0.48 
kgrad2 / s. Being mp the mass of the rod (flexible 
appendix), ℓ the size of the panel, k is the constant 
elastic and kd is the constant of dissipation of energy. 
The simulations were done for a three-minute (120 s) 
time interval with an initial condition (θ = 1𝑝𝑝 ). 
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Figure 9 shows the time evolution of the states: θ rigid 
body attitude, Ψ slosh comportment given by the 
pendulum angular displacement and δ the flexible 
displacement of the flexible rod. For this response of 
the initial condition these states are stabilized in 60 s.  
 

 
Fig. 9 Simulation of the states 

 
Figure 9 and 10 show the time evolution of the states: 
rigid body angular displacement and velocity, 
pendulum angular displacement and velocity and the 
flexible displacement and its rate, respectively. For 
this response of the initial condition these states are 
stabilized around 60 s. The perturbation of the initial 
condition generates a small perturbation in the slosh 
and flexible states. 

The Figure 11 shows the control signal of an 
internal torque M and an external force f. The internal 
torque may have been generated by a reaction wheel 
and the external force may have been generated by a 
pair of thrusters. The signal for the external actuator 
has a overshoot of 2.3 10−3 N and for the internal 
actuator the overshoot was 0.023 Nm.  
 By the results of the simulations, the control law 
design was able to provide a st able answer of the 

states, using accepted values for the actuators. This 
residual value is due to the coupling of flexibility with 
rigid body and sloshing movements. 

 
Fig. 10 Simulation of the derivatives of the states 

 

 
Fig. 11 Control signal 
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5 Conclusion 
 In this paper, it was described briefly the concepts 
of the sloshing phenomenon which is associated with 
the dynamics of a liquid moving into a partially fills 
reservoir.   
 The dynamic equations were deducted using a 
Lagrangian approach, admitting dissipation energy in 
the equation of motion. The dissipation energy was 
considered in the flexible movement and in the 
sloshing. The coupling of movements exists between 
the rigid body, the flexibility and the liquid slosh.  
 The control law is designed using the H-infinity 
method with weight functions acting in the sensitivity 
function S and complementary sensitivity function T. 
The weight function design was based on the distance 
between the bandwidth frequency with flexibility and 
slosh frequencies, thus avoiding resonance effects. 
 The simulations showed the good performance of 
the H-infinity controller, since it controlled and 
stabilized the attitude angle minimizing the effects of 
the interaction between sloshing and flexibility. In 
addition, the actuator remains stable and active, which 
means that they have been consuming the minimum 
energy. This result can be seen in the control signal 
due to the residual movement caused by flexibility, 
which in turn is coupled to all other controlled states, 
which forced the need for continuous action on the 
system. But as t he magnitude of this disturbance is 
very small, in the case of implementing the real 
actuators, it would be impossible to generate such a 
low level of effort, so the result obtained in this article 
is only numerical. 
 For future works, a more complex model with 
more vibration modes and non-linearities will be used 
to investigate the performance and robustness of the 
H-infinity control law. It is also suggested to include 
the model of the shape actuators, to check the 
effectiveness of this system designed to control a 
spaceship. It is also intended to carry out an 
experimental investigation using hardware in the loop 
system HIL as in [13]. 
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